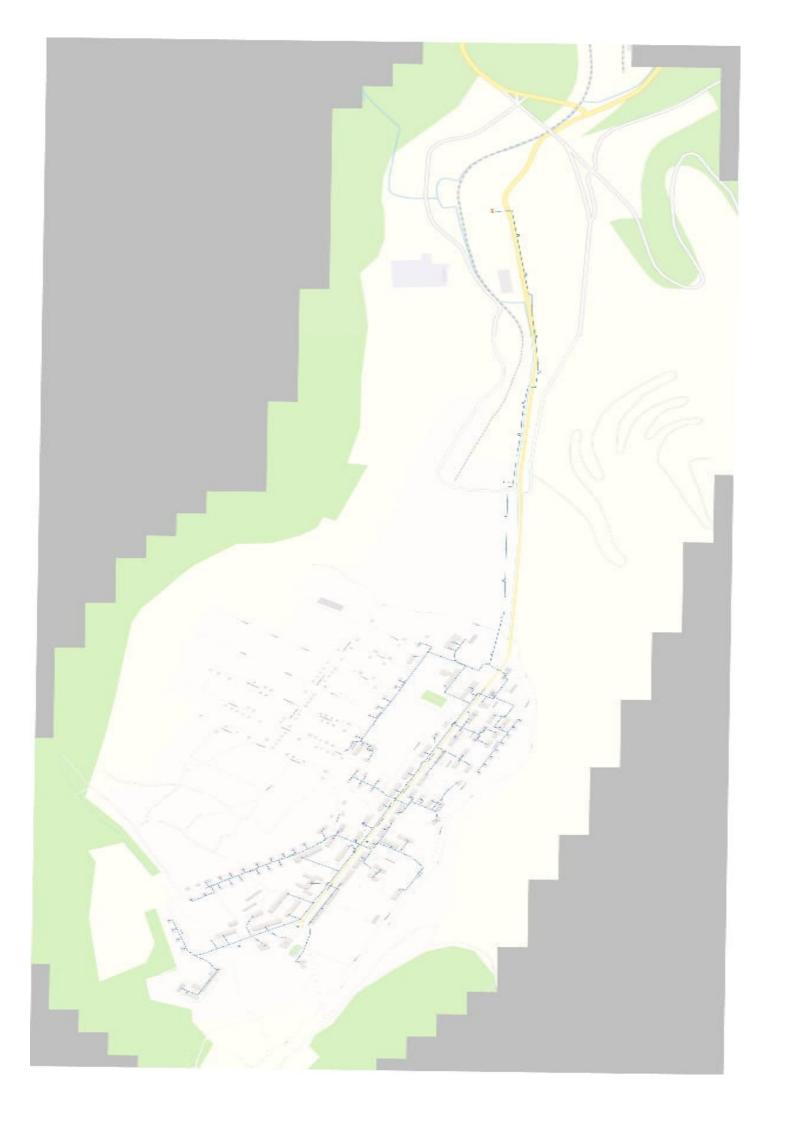
(РОССИЙСКАЯ ФИДЕРАЦИЯ РЕСПУБЛИКА ХАКАСИЯ АСКИЗСКИЙ РАЙОН АДМИНИСТРАЦИЯ ВЕРШИНО-ТЕЙСКОГО ПОССОВЕТА

РОССИЯ ФЕДЕРАЦИЯЗЫ ХАКАС РЕСПУБЛИКАЗЫ АСХЫС АЙМАА ТÖÖ ПАЗЫ ПОСЕЛОК ЧÖБİ УСТАҒ - ПАСТАА

ПОСТАНОВЛЕНИЕ

от 23 апреля 2020 года р.п. Вершина Тёи № 77-п

«Об актуализации и утверждении схемы теплоснабжения муниципального образования Вершино-Тёйский поссовет» Аскизского района Республики Хакасия»


В соответствии с Федеральным законом № 131-ФЗ от 06.10.2003 г. «Об общих принципах организации местного самоуправления в Российской Федерации», руководствуясь статьей 8,8.1,15 Устава муниципального образования Вершино-Тейского поссовет от 26.02.2006 г., Администрация Вершино-Тейского поссовета Аскизского района Республики Хакасия постановляет:

- 1. Актуализировать и утвердить схему теплоснабжения муниципального образования Вершино-Тёйский поссовет Аскизского района Республики Хакасия согласно существующей схеме приложение №1 до 01.04.2030г.
- 2. Определить гарантирующую организацию на территории муниципального образования Вершино-Тейский поссовет отвечающую за содержание и эксплуатацию системы теплоснабжения муниципальное унитарное предприятие «Абагаз».
- 3. Контроль за исполнением настоящего постановления возложить на специалиста по контролю администрации Вершино-Тейского поссовета А.В. Завертяева.
- 4. Настоящие постановление вступает в силу с момента его подписания и подлежит официальному опубликованию на сайте администрации Вершино-Тейского поссовета

Глава Вершино-Тейского поссовета

Г.Н.Елистратова

Схема теплоснабжения

муниципального образования «Вершино-Тейский поссовет» (актуализация по состоянию на 2020 год)

Разработчик:

Индивидуальный предприниматель _____ Жирнова А. Н.

1. ПОКАЗАТЕЛИ СУЩЕСТВУЮЩЕГО И ПЕРСПЕКТИВНОГО СПРОСА НА ТЕПЛОВУЮ
ЭНЕРГИЮ (МОЩНОСТЬ) И ТЕПЛОНОСИТЕЛЬ В УСТАНОВЛЕННЫХ ГРАНИЦАХ
ТЕРРИТОРИИ МУНИЦИПАЛЬНОГО ОБРАЗОВАНИЯ «ВЕРШИНО-ТЕЙСКИЙ ПОССОВЕТ»
4
лининининин тереприятири не тереприятири не тального жен порой монитости.
2. СУЩЕСТВУЮЩИЕ И ПЕРСПЕКТИВНЫЕ БАЛАНСЫ ТЕПЛОВОЙ МОЩНОСТИ
ИСТОЧНИКОВ ТЕПЛОВОЙ ЭНЕРГИИ И ТЕПЛОВОЙ НАГРУЗКИ ПОТРЕБИТЕЛЕЙ
3. СУЩЕСТВУЮЩИЕ И ПЕРСПЕКТИВНЫЕ БАЛАНСЫ ТЕПЛОНОСИТЕЛЯ 16
4. ОСНОВНЫЕ ПОЛОЖЕНИЯ МАСТЕР-ПЛАНА РАЗВИТИЯ СИСТЕМ ТЕПЛОСНАБЖЕНИЯ
ПОСЕЛЕНИЯ
5. ПРЕДЛОЖЕНИЯ ПО СТРОИТЕЛЬСТВУ, РЕКОНСТРУКЦИИ И ТЕХНИЧЕСКОМУ
перевооружению источников тепловой энергии
6. ПРЕДЛОЖЕНИЯ ПО СТРОИТЕЛЬСТВУ И РЕКОНСТРУКЦИИ ТЕПЛОВЫХ СЕТЕЙ
7. ПРЕДЛОЖЕНИЯ ПО ПЕРЕВОДУ ОТКРЫТЫХ СИСТЕМ ТЕПЛОСНАБЖЕНИЯ (ГОРЯЧЕГО
водоснабжения) в закрытые системы горячего водоснабжения
8. ПЕРСПЕКТИВНЫЕ ТОПЛИВНЫЕ БАЛАНСЫ
9. ИНВЕСТИЦИИ В СТРОИТЕЛЬСТВО, РЕКОНСТРУКЦИЮ И ТЕХНИЧЕСКОЕ
ПЕРЕВООРУЖЕНИЕ25
10. РЕШЕНИЕ ОБ ОПРЕДЕЛЕНИИ ЕДИНОЙ ТЕПЛОСНАБЖАЮЩЕЙ ОРГАНИЗАЦИИ
44
11. РЕШЕНИЯ О РАСПРЕДЕЛЕНИИ ТЕПЛОВОЙ НАГРУЗКИ МЕЖДУ ИСТОЧНИКАМИ
ТЕПЛОВОЙ ЭНЕРГИИ
1 EII/JUDUN JRETI NN
12. РЕШЕНИЯ ПО БЕСХОЗЯЙНЫМ ТЕПЛОВЫМ СЕТЯМ
13. СИНХРОНИЗАЦИЯ СХЕМЫ ТЕПЛОСНАБЖЕНИЯ СО СХЕМОЙ ГАЗОСНАБЖЕНИЯ И
ГАЗИФИКАЦИИ РЕСПУБЛИКИ ХАКАСИЯ, СХЕМОЙ И ПРОГРАММОЙ РАЗВИТИЯ
ЭЛЕКТРОЭНЕРГЕТИКИ, А ТАКЖЕ СО СХЕМОЙ ВОДОСНАБЖЕНИЯ И ВОДООТВЕДЕНИЯ
МУНИЦИПАЛЬНОГО ОБРАЗОВАНИЯ «ВЕРШИНО-ТЕЙСКИЙ ПОССОВЕТ»
14. ИНДИКАТОРЫ РАЗВИТИЯ СИСТЕМ ТЕПЛОСНАБЖЕНИЯ 50
15. ЦЕНОВЫЕ (ТАРИФНЫЕ) ПОСЛЕДСТВИЯ 52

1. ПОКАЗАТЕЛИ СУЩЕСТВУЮЩЕГО И ПЕРСПЕКТИВНОГО СПРОСА НА ТЕПЛОВУЮ ЭНЕРГИЮ (МОЩНОСТЬ) И ТЕПЛОНОСИТЕЛЬ В УСТАНОВЛЕННЫХ ГРАНИЦАХ ТЕРРИТОРИИ МУНИЦИПАЛЬНОГО ОБРАЗОВАНИЯ «ВЕРШИНО-ТЕЙСКИЙ ПОССОВЕТ»

а) Величины существующей отапливаемой площади строительных фондов и приросты отапливаемой площади строительных фондов по расчетным элементам территориального деления с разделением объектов строительства на многоквартирные дома, индивидуальные жилые дома, общественные здания и производственные здания промышленных предприятий по этапам - на каждый год первого 5-летнего периода и на последующие 5-летние периоды (далее - этапы) Оценка потребления товаров и услуг теплоснабжающих организаций играет важное значение при

Оценка потребления товаров и услуг теплоснабжающих организаций играет важное значение при разработке схемы теплоснабжения. Во-первых, объемы потребления должны быть обеспечены соответствующими производственными мощностями систем теплоснабжения. Системы теплоснабжения должны обеспечивать потребителей тепловой энергией в соответствии с требованиями к качеству, в том числе круглосуточное и бесперебойное снабжение. Во-вторых, прогнозные объемы потребления тепловой энергии должны учитываться при расчете тарифов, которые являются одним из основных источников финансирования инвестиционных программ теплоснабжающей организации.

Для оценки перспективных объемов был проанализирован сложившийся уровень потребления тепловой энергии в муниципальном образовании «Вершино-Тейский поссовет».

Для прогноза прироста площадей строительных фондов муниципального образования произведен расчет численности населения.

Генеральным планом муниципального образования «Вершино-Тейский поссовет», утвержденным в 2012 году, на 2021 год предусмотрена численность населения муниципального образования в размере 4474 чел., на 2031 год — 4610 чел. Такой прогноз был составлен исходя из базового показателя численности населения на 2012 год в размере 4342 чел. Кроме того, в генеральном плане развитие муниципального образования «Вершино-Тейский поссовет» напрямую связывается с градообразующей деятельностью по добыче железных руд, которая в последние несколько лет не ведется.

В связи с этим тенденция ряда последних лет показывает сокращение численности населения муниципального образования «Вершино-Тейский поссовет». По состоянию на 01.01.2018 г. она составляет 3184 чел.

Федеральным и республиканским правительствами предпринимается ряд мер по расширению градообразующей сферы деятельности муниципального образования «Вершино-Тейский поссовет» на иные, что должно обеспечить сохранение рабочего поселка Вершина Тёи как места для полноценной жизнедеятельности людей.

Представляется целесообразным планировать развитие систем теплоснабжения с учетом фактически сложившейся численности населения, так как от этого напрямую зависит размер финансовой нагрузки для жителей и предприятий муниципального образования «Вершино-Тейский поссовет».

С учетом этого в настоящей схеме предусматривается сохранение численности населения муниципального образования «Вершино-Тейский поссовет» на уровне 3,2 тыс. чел. Вместе с этим предусматривается сохранение на текущем уровне количества жилищного фонда, в том числе обеспеченного централизованных водоснабжением, и объектов социального и культурно-бытового назначения.

Учитывая значительный резерв мощности промышленной котельной сети магистральных трубопроводов, теплоснабжение вновь вводимых строительных фондов в пределах существующей застройки предусматривается схемой теплоснабжения за счет существующих мощностей.

б) Существующие и перспективные объемы потребления тепловой энергии (мощности) и теплоносителя с разделением по видам теплопотребления в каждом расчетном элементе территориального деления на каждом этапе

Прогноз прироста объемов потребления тепловой энергии представлен в таблице 1. Теплоноситель потребителям не отпускается. Прогноз выполнен без учета влияния изменения погодных условий.

Габлица 1

Показатель	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028
Потребление тепло-вой энергии, тыс. Гкал в год	22,8	22,8	22,8	22,8	22,8	22,8	22,8	22,8	22,8	22,8

Прирост										
потребле-ния	-	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
тепловой										
энер-гии по										
отношению к										
предыдущему										
пери-оду,										
тыс. Гкал в										
год										

в) Существующие и перспективные объемы потребления тепловой энергии (мощности) и теплоносителя объектами, расположенными в производственных зонах, на каждом этапе.

Потребление тепловой энергии (мощности) и теплоносителя объектами, расположенными в производственных зонах, осуществляется за счет собственных теплоисточников. Изменение производственных зон и их перепрофилирование не планируется.

2. СУЩЕСТВУЮЩИЕ И ПЕРСПЕКТИВНЫЕ БАЛАНСЫ ТЕПЛОВОЙ МОЩНОСТИ ИСТОЧНИКОВ ТЕПЛОВОЙ ЭНЕРГИИ И ТЕПЛОВОЙ НАГРУЗКИ ПОТРЕБИТЕЛЕЙ

а) Описание существующих и перспективных зон действия систем теплоснабжения и источников тепловой энергии

На территории муниципального образования «Вершино-Тейский поссовет» существующие зоны действия систем теплоснабжения источников тепловой энергии расположены только на территории р.п. Вершина Тёи.

- б) Описание существующих и перспективных зон действия индивидуальных источников тепловой энергии
- В муниципальном образовании «Вершино-Тейский поссовет» теплоснабжение малоэтажных и индивидуальных жилых застроек, а также отдельных зданий коммунально-бытовых и производственных потребителей, не подключенных к центральному теплоснабжению, осуществляется от индивидуальных источников тепловой энергии.
- в) Существующие и перспективные балансы тепловой мощности и тепловой нагрузки потребителей в зонах действия источников тепловой энергии, в том числе работающих на единую тепловую сеть, на кажлом этапе

Балансы тепловой мощности и перспективной тепловой нагрузки в зонах действия источников тепловой энергии с определением резервов (дефицитов) существующей располагаемой тепловой мощности источников тепловой энергии в муниципальном образовании «Вершино-Тейский поссовет» представлены в таблице 2.

Период реализа-ции схемы теп- лоснабжения	Установленная тепловая мощность, Гкал/ч	Располага- емая теп- ловая мощность, Гкал/ч	Затраты тепло-вой мощности на собственные и хо- зяйственные нужды, Гкал/ч	Мощ- ность нетто, Гкал/ч	Тепловые потери в тепловых сетях, Гкал/ч	Нагрузка потребите- лей, Гкал/ч	Присоединённая тепловая нагрузка (с учетом потерь в сетях),	Резерв (де- фицит) теп- ловой мощ- ности, Гкал/ч
2019	50,0	28,3	3,4	24,9	4,7	17,9	22,6	2,3
2020	50,0	28,3	3,4	24,9	4,7	17,9	22,6	2,3
2021	50,0	28,3	3,4	24,9	4,7	17,9	22,6	2,3
2022	50,0	28,3	3,4	24,9	4,6	17,9	22,5	2,4
2023	50,0	28,3	3,4	24,9	4,5	17,9	22,4	2,5
2024	20,0	20,0	0,3	19,7	2,7	14,4	17,1	2,6
2025	20,0	20,0	0,3	19,7	2,6	14,4	17,0	2,7
2026	20,0	20,0	0,3	19,7	2,5	14,4	16,9	2,8
2027	20,0	20,0	0,3	19,7	2,4	14,4	16,8	2,9
2028	20,0	20,0	0,3	19,7	2,3	14,4	16,7	3,0

Дефицит тепловой мощности в системе теплоснабжения муниципального образования «Вершино-Тейский поссовет» не отмечается.

в1) Существующие и перспективные значения установленной тепловой мощности основного оборудования источника (источников) тепловой энергии

Существующие и перспективные значения мощности теплоэнергетического оборудования источников тепловой энергии приведены в таблице 2.

Существующий и перспективный баланс производительности водоподготовительных установок и потерь теплоносителя приведены в таблице 3

Таблина 3

	Таблица 3											
Наименование	Ед.изм.	2020	2021	2022	2023	2024	2025	2026	2027	2028		
Производительность ВПУ	т/ч	100	100	100	100	100	100	100	100	100		
Потери	%	-	-	-	-	-	-	-	-	-		
располагаемой производительности												
Собственные нужды	т/ч	_	_	-	-	_	-	-	-	-		
Количествобаковаккумуляторов	ед	-	-	-	-	-	-	-	-	-		
Емкость баков- аккумуляторов	тыс м3	-	-	-	-	-	-	-	-	-		
Всего подпитка тепло-вой сети, в т.ч.:	т/ч	13,091	13,204	5,217	5,33	5,443	5,556	5,669	5,782	5,901		
нормативные утечки теплоносителя	т/ч	4,991	5,104	5,217	5,33	5,443	5,556	5,669	5,782	5,901		
сверхнормативные утечки теплоносителя	т/ч	-	-	-	-	-	-	-	-	-		
отпуск теплоносителя из тепловых сетей на цели горячего водоснабжения (для открытых систем теплоснабжения)	т/ч	8,1	8,1	-	-	-	-	-	-	-		
Максимальное потребле-ние теплоносителя теплоносителя теплонотребляющими уста-новками потребителей, т/ч	т/ч	546,28	546,28	546,28	546,28	546,28	546,28	546,28	546,28	546,28		
Суммарный расход сете-вой воды, т/ч	т/ч	550,71	551,12	551,55	551,97	552,39	552,81	553,23	553,67	554,07		

Подключение новых потребителей не создаст дефицита теплоносителя в системах централизованного теплоснабжения.

в2) Существующие и перспективные технические ограничения на использование установленной тепловой мощности и значения располагаемой мощности основного оборудования источников тепловой энергии

Технические ограничения на использование установленной тепловой мощности на теплоисточниках муниципального образования «Вершино-Тейский поссовет» не зафиксированы.

Значения располагаемой мощности основного оборудования источников тепловой энергии представлены в таблице 2.

в3) Существующие и перспективные затраты тепловой мощности на собственные и хозяйственные нужды теплоснабжающей организации в отношении источников тепловой энергии

Значения существующих и перспективных затрат тепловой мощности на собственные и хозяйственные нужды теплоснабжающей организации представлены в таблице 2.

в4) Значения существующей и перспективной тепловой мощности источников тепловой энергии нетто

Значения существующей и перспективной тепловой мощности источников тепловой энергии нетто приведены в таблице 2.

в5) Значения существующих и перспективных потерь тепловой энергии при ее передаче по тепловым сетям, включая потери тепловой энергии в тепловых сетях теплопередачей через теплоизоляционные конструкции теплопроводов и потери теплоносителя, с указанием затрат теплоносителя на компенсацию этих потерь

Значения существующих и перспективных потерь тепловой энергии при ее передаче по тепловым сетям, включая потери тепловой энергии в тепловых сетях теплопередачей через теплоизоляционные конструкции теплопроводов и потери теплоносителя, а также затраты теплоносителя на компенсацию этих потерь приведены в таблице 3.

вб) Затраты существующей и перспективной тепловой мощности на хозяйственные нужды теплоснабжающей (теплосетевой) организации в отношении тепловых сетей

Тепловая мощность на хозяйственные нужды тепловых сетей на территории муниципального образования «Вершино-Тейский поссовет» не используется.

в7) Значения существующей и перспективной резервной тепловой мощности источников тепловой энергии, в том числе источников тепловой энергии, принадлежащих потребителям, и источников тепловой энергии теплоснабжающих организаций, с выделением значений аварийного резерва и резерва по договорам на поддержание резервной тепловой мощности

Значения существующей и перспективной резервной тепловой мощности источников теплоснабжения приведены в таблице 4.

		Таолица 4
Период реализации	Резерв (дефицит) тепло-вой	Аварийный резерв тепло-вой
схемы теп-лоснабжения	мощности, Гкал/ч	мощности, Гкал/ч
2019	2,3	7,075
2020	2,3	7,075
2021	2,3	7,075
2022	2,4	7,075
2023	2,5	7,075
2024	2,6	4,0
2025	2,7	4,0
2026	2,8	4,0
2027	2,9	4,0
2028	3,0	4,0

Таблица 4

Заключение договоров на поддержание резервной тепловой мощности на территории муниципального образования «Вершино-Тейский поссовет» не производится и в перспективе не планируется.

в8) Значения существующей и перспективной тепловой нагрузки потребителей, устанавливаемые с учетом расчетной тепловой нагрузки

Значения существующей и перспективной тепловой нагрузки потребителей, устанавливаемые с учетом расчетной тепловой нагрузки, приведены в таблице 2.

г) Перспективные балансы тепловой мощности источников тепловой энергии и тепловой нагрузки потребителей в случае, если зона действия источника тепловой энергии расположена в границах двух или более поселений, с указанием величины тепловой нагрузки для потребителей каждого поселения

Источники тепловой энергии с зонами действия, расположенными в границах двух или более поселений, на территории муниципального образования «Вершино-Тейский поссовет» отсутствуют.

д) Радиус эффективного теплоснабжения, позволяющий определить условия, при которых подключение (технологическое присоединение) теплопотребляющих установок к системе теплоснабжения нецелесообразно

Радиус эффективного теплоснабжения - максимальное расстояние от теп-лопотребляющей установки до ближайшего источника тепловой энергии в си-стеме теплоснабжения, при превышении которого

подключение теплопотребляющей установки к данной системе теплоснабжения нецелесообразно по причине увеличения совокупных расходов в системе теплоснабжения.

Радиус эффективного теплоснабжения позволяет определить условия, при которых подключение новых или увеличивающих тепловую нагрузку теплопотребляющих установок к системе теплоснабжения нецелесообразно вследствие увеличения совокупных расходов в указанной системе на единицу тепловой мощности.

Оптимальный радиус теплоснабжения предлагается определять из условия минимума выражения для «удельных стоимостей сооружения тепловых сетей и источника»: S=A+Z→min (руб./Гкал/ч),

где: А – удельная стоимость сооружения тепловой сети, руб./Гкал/ч;

Z – удельная стоимость сооружения котельной, руб./Гкал/ч.

Аналитическое выражение для оптимального радиуса теплоснабжения предложено в следующем виде, км: $Ront = (140/s0,4) \cdot (1/B0,1) \cdot (\Delta \tau/\Pi)0,15$

где: В – среднее число абонентов на 1 км2;

s – удельная стоимость материальной характеристики тепловой сети, руб./м2;

 Π – теплоплотность района, Γ кал/ч·км2;

 $\Delta \tau$ – расчетный перепад температур теплоносителя в тепловой сети, гр.С;

При этом предложено некоторое значение предельного радиуса действия тепловых сетей, которое определяется из соотношения, км:

Rпред=[(p-C)/1,2K]2,5

где Rпред – предельный радиус действия тепловой сети, км;

p — разница себестоимости тепла, выработанного на котельных и в индивидуальных котельных абонентов, руб./Гкал;

С – переменная часть удельных эксплуатационных расходов на транспорт тепла, руб./Гкал;

К – постоянная часть удельных эксплуатационных расходов на транспорт тепла при радиусе действия тепловой сети, равном 1 км, руб./Гкал⋅км.

Результаты расчета радиуса эффективного теплоснабжения каждой системы теплоснабжения муниципального образования «Вершино-Тейский поссовет» приведены в таблице 5. На рисунках 1 и 2 графически изображены радиусы эффективного теплоснабжения.

Тепловая энергия от промышленной котельной подается по тепломагистрали в одном направлении на значительное расстояние (почти 2 км). Почти все тепловые нагрузки данной котельной располагаются за пределами радиуса эффективного теплоснабжения. Для обеспечения необходимого гидравлического режима Промышленной котельной вблизи границы радиуса эффективного теплоснабжения установлена подкачивающая насосная станция, что также свидетельствует об увеличении расходов на транспортировку тепловой энергии за пределы радиуса эффективного теплоснабжения.

Рисунок 1. Радиус эффективного теплоснабжения промышленной котельной.

Рисунок 2. Радиус эффективного теплоснабжения котельной, проек-тируемой на замену промышлен-ной котельной

Наименован ие источника теп- лоснабжения	Площа дь зоны дей- ствия теп- лоисто ч-ника, кв.км	Колич е-ство по- требит е-лей, ед.	Средн ее число потре би- телей на 1 кв.км, ед.	Подкл ю- ченная нагрузк а, Гкал/ч	Матер и- альная ха- рактер и- стика теп- ловой сети, кв.м	Стои- мость тепло- вых се-тей, млн руб.	Удельная стои-мость матери-альной харак-теристики теп-ловой сети, руб./м2	Средня я тепло- плотнос ть, Гкал/ч/ кв.км	Расчетн ый перепад температ ур теплонос и-теля в теп- ловой сети, гр.С	Радиус эф- фективно го теплосна б-жения, км
Промышлен -ная котельная	3,26	110	34	17,900	3948,3	269,0	68130,0	5,5	25	1,4
Автоматизи ро-ванная модуль-ная котельная, проектируе мая на замену существующе й промышлен -ной котельной	3,26	109	33	14,400	564,3	159,7	62271,6	4,4	25	1,5

3. СУЩЕСТВУЮЩИЕ И ПЕРСПЕКТИВНЫЕ БАЛАНСЫ ТЕПЛОНОСИТЕЛЯ

а) Существующие и перспективные балансы производительности водоподготовительных установок и максимального потребления теплоносителя теплопотребляющими установками потребителей

Существующие и перспективные балансы производительности водоподготовительных установок и максимального потребления теплоносителя теплопотребляющими установками потребителей приведены в таблице 3.

б) Существующие и перспективные балансы производительности водоподготовительных установок источников тепловой энергии для компенсации потерь теплоносителя в аварийных режимах работы систем теплоснабжения

Существующие и перспективные балансы производительности водоподготовительных установок источников тепловой энергии для компенсации потерь теплоносителя в аварийных режимах работы систем теплоснабжения приведены в таблице 3.

Подключение новых потребителей не создаст дефицита теплоносителя в системах централизованного теплоснабжения.

4. ОСНОВНЫЕ ПОЛОЖЕНИЯ МАСТЕР-ПЛАНА РАЗВИТИЯ СИСТЕМ ТЕПЛОСНАБЖЕНИЯ ПОСЕЛЕНИЯ

а) Описание сценариев развития теплоснабжения поселения

Схема теплоснабжения разрабатывается на основе документов территориального планирования поселения, утвержденных в соответствии с законодательством о градостроительной деятельности.

Генеральный план муниципального образования «Вершино-Тейский поссовет» в части развития систем теплоснабжения предусматривает инерционный сценарий с сохранением существующей организации теплоснабжения и не предполагает вариантности ее развития.

б) Обоснование выбора приоритетного сценария развития теплоснабжения поселения

Приоритетным сценарием развития системы теплоснабжения муниципальнного образования «Вершино-Тейский поссовет» является сохранение существующей организации теплоснабжения с постепенным обновлением оборудования и сооружений.

5. ПРЕДЛОЖЕНИЯ ПО СТРОИТЕЛЬСТВУ, РЕКОНСТРУКЦИИ И ТЕХНИЧЕСКОМУ ПЕРЕВООРУЖЕНИЮ ИСТОЧНИКОВ ТЕПЛОВОЙ ЭНЕРГИИ

а) Предложения по строительству источников тепловой энергии, обеспечивающих перспективную тепловую нагрузку на осваиваемых территориях поселения, для которых отсутствует возможность и (или) целесообразность передачи тепловой энергии от существующих или реконструируемых источников тепловой энергии, обоснованная расчетами ценовых (тарифных) последствий для потребителей и радиуса эффективного теплоснабжения

Освоение территорий муниципального образования «Вершино-Тейский поссовет», для которых отсутствует возможность или целесообразность передачи тепловой энергии от существующих источников тепловой энергии, не планируется.

- б) Предложения по реконструкции источников тепловой энергии, обеспечивающих перспективную тепловую нагрузку в существующих и расширяемых зонах действия источников тепловой энергии Мероприятия по реконструкции и техническому перевооружению теплоисточников для обеспечения вновь подключаемых нагрузок потребителей не планируются.
- в) Предложения по техническому перевооружению источников тепловой энергии с целью повышения эффективности работы систем теплоснабжения

Выявленные проблемы функционирования и развития системы теплоснабжения муниципального образования «Вершино-Тейский поссовет» решаются посредством мероприятий по модернизации, реконструкции инфраструктуры.

Основным направлением данных мероприятий является максимально возможное использование существующего оборудования на наиболее эффективных действующих в муниципальном образовании «Вершино-Тейский поссовет» источниках теплоснабжения.

Подробная информация о мероприятиях по реконструкции и техническому перевооружению теплоисточников представлена в приложении 2 к обосновывающим материалам схемы теплоснабжения.

С учетом перспективных тепловых нагрузок общая годовая потребность в топливе для централизованного теплоснабжения муниципального образования «Вершино-Тейский поссовет» составит 6431,8 т у.т. (таблица 6).

Таблица 6

Наименование	Вид топлива	Удельный расход топлива, кг	Годовое потреблени	е топлива, т	г у.т.
котель-ной		у.т.			
			Всего	в том	числе:
			В отопи-тельный период	В	В отопи-
				неотопи-	тельный
				тельный	период
				пе-риод	
Котельная	Уголь	185,9	6431,8	6431,8	0

г) Графики совместной работы источников тепловой энергии, функционирующих в режиме комбинированной выработки электрической и тепловой энергии и котельных

Источники тепловой энергии, функционирующие в режиме комбинированной выработки электрической и тепловой энергии, на территории муниципального образования «Вершино-Тейский поссовет» отсутствуют.

д) Меры по выводу из эксплуатации, консервации и демонтажу избыточных источников тепловой энергии, а также источников тепловой энергии, выработавших нормативный срок службы, в случае если продление срока службы технически невозможно или экономически нецелесообразно

Избыточная мощность, изношенность промышенной котельной и ее значительная удаленность от основной группы потребителей тепловой энегии существенно увеличивают себестоимость тепловой энергии. Представляется целесообразным строительство нового теплоисточника с учетом существующих и перспективных нагрузок потребителей на площадке рядом мастерскими карьера, что снизит расходы на транспортировку тепловой энергии и теплоносителя.

е) Меры по переоборудованию котельных в источники тепловой энергии, функционирующие в режиме комбинированной выработки электрической и тепловой энергии

Меры по переоборудованию котельных муниципального образования «Вершино-Тейский поссовет» в источники тепловой энергии, функционирующие в режиме комбинированной выработки электрической и тепловой энергии, схемой теплоснабжения не предусмотрены.

ж) Меры по переводу котельных, размещенных в существующих и расширяемых зонах действия источников тепловой энергии, функционирующих в режиме комбинированной выработки электрической и тепловой энергии, в пиковый режим работы, либо по выводу их из эксплуатации

Меры по переводу котельных, размещенных в существующих и расширяемых зонах действия источников тепловой энергии, функционирующих в режиме комбинированной выработки электрической и тепловой энергии, в пиковый режим работы, либо по выводу их из эксплуатации схемой не предусмотрены, так как на территории муниципального образования «Вершино-Тейский поссовет» отсутствуют источники комбинированной выработки тепловой и электрической энергии.

3) Температурный график отпуска тепловой энергии для каждого источника тепловой энергии или группы источников тепловой энергии в системе теплоснабжения, работающей на общую тепловую сеть, и оценку затрат при необходимости его изменения

Температурный график отпуска тепловой энергии составляет 95/70 гр.С. Изменение применяемого температурного графика схемой не предусмотрено.

и) Предложения по перспективной установленной тепловой мощности каждого источника тепловой энергии с предложениями по сроку ввода в эксплуатацию новых мощностей

Перспективная установленная тепловая мощность источника тепловой энергии представлена в таблице 2.

к) Предложения по вводу новых и реконструкции существующих источников тепловой энергии с использованием возобновляемых источников энергии, а также местных видов топлива

Ввод новых и реконструкция существующих источников тепловой энергии с использованием возобновляемых источников энергии нецелесообразен по причине отсутствия на территории муниципального образования «Вершино-Тейский поссовет» и на территориях ближайших муниципальных образований необходимой инфраструктуры для генерации с использованием возобновляемых источников энергии.

Котельная муниципального образования «Вершино-Тейский поссовет» работает на угле.

6. ПРЕДЛОЖЕНИЯ ПО СТРОИТЕЛЬСТВУ И РЕКОНСТРУКЦИИ ТЕПЛОВЫХ СЕТЕЙ

а) Предложения по строительству и реконструкции тепловых сетей, обеспечивающих перераспределение тепловой нагрузки из зон с дефицитом располагаемой тепловой мощности источников тепловой энергии в зоны с резервом располагаемой тепловой мощности источников тепловой энергии (использование существующих резервов)

Строительство и реконструкция тепловых сетей, обеспечивающих перераспределение тепловой нагрузки из зон с дефицитом располагаемой тепловой мощности источников тепловой энергии в зоны с резервом располагаемой тепловой мощности источников тепловой энергии схемой теплоснабжения не предусмотрено, так как зоны с дефицитом располагаемой тепловой мощности источников тепловой энергии на территории муниципального образования «Вершино-Тейский поссовет» отсутствуют и в период реализации схемы не предвидятся.

б) Предложения по строительству и реконструкции тепловых сетей для обеспечения перспективных приростов тепловой нагрузки в осваиваемых районах поселения под жилищную, комплексную или производственную застройку

Мероприятия по строительству и реконструкции тепловых сетей для обеспечения перспективных приростов тепловой нагрузки в осваиваемых районах под жилищную, комплексную или производственную застройку схемой теплоснабжения не предусмотрены и в дальнейшем могут реализовываться по индивидуальным тарифам на подключение.

в) Предложения по строительству и реконструкции тепловых сетей в целях обеспечения условий, при наличии которых существует возможность поставок тепловой энергии потребителям от различных источников тепловой энергии при сохранении надежности теплоснабжения

Строительство и реконструкция тепловых сетей в целях обеспечения условий, при наличии которых существует возможность поставок тепловой энергии потребителям от различных источников тепловой энергии схемой теплоснабжения не предусмотрено.

г) Предложения по строительству и реконструкции тепловых сетей для повышения эффективности функционирования системы теплоснабжения, в том числе за счет перевода котельных в пиковый режим работы или ликвидации котельных

Строительство и реконструкция тепловых сетей для повышения эффективности функционирования системы теплоснабжения за счет перевода котельных в пиковый режим работы или ликвидации котельных схемой теплоснабжения не предусмотрено.

д) Предложения по строительству и реконструкции тепловых сетей для обеспечения нормативной надежности теплоснабжения потребителей

Предложения по реконструкции тепловых сетей для повышения эффективности функционирования системы теплоснабжения, обеспечения нормативной надежности и безопасности теплоснабжения

включают перекладку сетей, исчерпавших свой ресурс и нуждающихся в замене. Подробная информация о мероприятиях по реконструкции тепловых сетей представлена в приложении 2 к обосновывающим материалам схемы теплоснабжения.

Перечень мероприятий и инвестиционных проектов в теплоснабжении, обеспечивающих спрос на услуги теплоснабжения по годам реализации Схемы для решения поставленных задач и обеспечения целевых показателей развития коммунальной инфраструктуры муниципального образования «Вершино-Тейский поссовет» также включает инженерно-техническую оптимизацию коммунальных систем, в том числе:

- 1. Мероприятия по выявлению бесхозяйных объектов недвижимого имущества, используемых для передачи энергетических ресурсов, организации поставки таких объектов на учет в качестве бесхозяйных объектов недвижимого имущества и признанию права муниципальной собственности.
- 2. Мероприятия по организации управления бесхозяйными объектами недвижимого имущества, используемыми для передачи энергетических ресурсов, с момента выявления таких объектов, в т.ч. определению источника компенсации возникающих при эксплуатации нормативных потерь энергетических ресурсов, в частности за счет включения расходов на компенсацию данных потерь в тариф организации, управляющей такими объектами.

Разработанные мероприятия систематизированы по степени их актуальности в решении вопросов развития системы теплоснабжения, сроку окупаемости, а также с учетом оценки тарифных последствий, влияющих на изменение размера платы граждан за коммунальные услуги.

Сроки реализации мероприятий определены исходя из их значимости и планируемых сроков ввода объектов капитального строительства.

Объемы мероприятий определены укрупнено. Список мероприятий и стоимость на конкретном объекте детализируется после разработки проектной документации (при необходимости после проведения энергетических обследований).

7. ПРЕДЛОЖЕНИЯ ПО ПЕРЕВОДУ ОТКРЫТЫХ СИСТЕМ ТЕПЛОСНАБЖЕНИЯ (ГОРЯЧЕГО ВОДОСНАБЖЕНИЯ) В ЗАКРЫТЫЕ СИСТЕМЫ ГОРЯЧЕГО ВОДОСНАБЖЕНИЯ

Согласно Федеральному закону от 07.12.2011 г. №417-ФЗ «О внесении изменений в отдельные законодательные акты Российской Федерации в связи с принятием Федерального закона «О водоснабжении и водоотведении», открытые системы теплоснабжения должны быть закрыты в срок до 2022 года. В условиях отсутствия предусмотренных документами территориального развития муниципального образования «Вершино-Тейский поссовет» площадок под строительство центральных тепловых пунктов закрытие систем теплоснабжения представляется целесообразным путем модернизации внутридомового инженерного оборудования.

В целях исполнения законодательства Российской Федерации в части перехода от открытой системы теплоснабжения к закрытой, а также для обеспечения потребителей в жилищном фонде муниципального образования «Вершино-Тейский поссовет» коммунальными услугами отопления и горячего водоснабжения надлежащего качества представляется целесообразным реализовать мероприятия по модернизации внутридомовых систем отопления и горячего водоснабжения, обеспечивающих:

- расчетные параметры циркуляции теплоносителя во внутридомовом инженерном оборудовании путем установки и наладки регулирующей арматуры;
- организацию зависимой схемы подключения систем отопления и горячего водоснабжения многоквартирных и жилых домов, а также общественных зданий к системам централизованного теплоснабжения муниципального образования «Вершино-Тейский поссовет».

Необходимым условием экономии тепловой энергии является выдерживание заданных температурного графика и гидравлического режимов в системе теплоснабжения зданий и сооружений. Так, превышение температуры в обратном трубопроводе приводит к недополучению тепла. Нарушение гидравлического режима может привести к превышению температуры в одних помещениях, и снижению ее ниже санитарных норм в других. Использование смесительных насосов системы отопления обеспечивает, в свою очередь, выдерживание перепада температур, согласно температурному графику и температуры наружного воздуха, а также может обеспечить заданное давление в отопительной системе.

Применение автоматизированных (или полуавтоматизированных) тепловых пунктов и индивидуальных радиаторных регуляторов температуры, позволяет исключить превышение температуры в помещениях выше нормы и снижение температуры при незначительном отклонении температуры теплоносителя относительно температурного графика. Использование смесительных насосов также позволяет рассмотреть возможность регулирования потребления тепловой энергии на отопление в течение суток и (или) недели (понижение температуры в ночное время и выходные дни).

8. ПЕРСПЕКТИВНЫЕ ТОПЛИВНЫЕ БАЛАНСЫ

а) Перспективные топливные балансы для каждого источника тепловой энергии по видам основного, резервного и аварийного топлива на каждом этапе

Для источников тепловой энергии расположенных на территории муниципального образования «Вершино-Тейский поссовет» основным видом топлива является уголь.

Расчет перспективных максимальных часовых и годовых расходов основного вида топлива для зимнего и летнего периодов, необходимого для обеспечения нормативного функционирования теплоисточников муниципального образования «Вершино-Тейский поссовет» в части производства тепловой энергии для теплоснабжения, представлен в таблице 7.

	Годовое потребление топлива, т у.т.									
Наименование котельной	В отопителы	ный период	В неотопительный перио							
	Максималь-ное часовое	Годовое	Максималь- ное часовое	Годовое						
Промышленная котельная	4,7	9430,5	0	0						
Автоматизированная модульная котельная, проектируемая на замену существующей промышленной котельной	3,2	3142,15	0	0						

б) Потребляемые источником тепловой энергии виды топлива, включая местные виды топлива, а также используемые возобновляемые источники энергии

Котельные муниципального образования «Вершино-Тейский поссовет» работают на угле.

Использование возобновляемых источников энергии для производства тепловой энергии для централизованного теплоснабжения не представляется возможным по причине отсутствия на территории муниципального образования «Вершино-Тейский поссовет» и на территориях ближайших муниципальных образований необходимой инфраструктуры для генерации с использованием возобновляемых источников энергии.

9. ИНВЕСТИЦИИ В СТРОИТЕЛЬСТВО, РЕКОНСТРУКЦИЮ И ТЕХНИЧЕСКОЕ ПЕРЕВООРУЖЕНИЕ

а) Предложения по величине необходимых инвестиций в строительство, реконструкцию и техническое перевооружение источников тепловой энергии на каждом этапе

Предложения по величине необходимых инвестиций в реконструкцию и техническое перевооружение источника тепловой энергии представлены в таблице 8.

Наимено- вание и	Ед. изм.	Кол-			Объ	ем фина	нсировані	ия, тыс. р	уб.		
состав ме- роприя- тий		ВО	Всего 2020 - 2028 гг.	2020	2021	2022	2023	2024	2025	2026	2027
Строител	1 ме-										
ь-ство мо- дульной	роприятие	1	136550	0	0	66720	69830	0	0	0	0
автомати-											
зирован-											
ной											
уголь-ной											
ко-											
тельной											
(5 котлов)											
на											
площадке											
рядом ма-											
стерскими											
карьера											

Реализация разработанных мероприятий направлена на повышение надежности теплоснабжения потребителей. В связи с этим оценка экономического эффекта по таким мероприятиям не является определяющей.

Стоимости мероприятий определены на основании укрупненных сметных нормативов для объектов непроизводственного назначения и инженерной инфраструктуры, утвержденных федеральным органом исполнительной власти, осуществляющим функции по выработке государственной политики и нормативно-правовому регулированию в сфере строительства (Государственные сметные нормативы. Нормативы цены строительства. НЦС 81-02-19-2017. Укрупненные нормативы цены строительства. Сборник №19. Здания и сооружения городской инфраструктуры. Утверждены Приказом Министерства строительства и жилищно-коммунального хозяйства Российской Федерации от 01.06.2017 г. №837/пр; Государственные сметные нормативы. Нормативы цены строительства. НЦС 81-02-13-2017. Утверждены Приказом Министерства строительства и жилищно-коммунального хозяйства Российской Федерации от 21.07.2017 г. №1011/пр); укрупненных оценок стоимости мероприятий по объектам аналогам.

В приложении 2 к обосновывающим материалам схемы теплоснабжения приведена подробная информация о величине необходимых инвестиций в реконструкцию и техническое перевооружение источников тепловой энергии и тепловых сетей.

б) Предложения по величине необходимых инвестиций в строительство, реконструкцию и техническое перевооружение тепловых сетей, насосных станций и тепловых пунктов на каждом этапе

Предложения по величине необходимых инвестиций в реконструкцию и техническое перевооружение тепловых сетей представлены в таблице 9.

Наименование	Ед.	Кол-во	ол-во Объем финансирования, тыс. руб.										
и состав мероприятий	изм.		Всего 2020 - 2028 гг.	2020	2021	2022	2023	2024	2025	2026	2027		
Перекладка участка теплосети от ЦТК1 до Р6. 2Ду = 400 мм. Способ прокладки - подземная в лотках	п. м	31,4	1 522	0	1 522	0	0	0	0	0	0		
Перекладка участка теплосети от Р6 до ЦТК2. 2Ду = 400 мм. Способ прокладки - подземная в лотках	П. М	29	1 405	0	1 405	0	0	0	0	0	0		
Перекладка участка теплосети от ЦТК4 до Р55. 2Ду = 250 мм. Спо-соб прокладки - надземная	п. м	116,3	2 740	0	2 740	0	0	0	0	0	0		
Перекладка участка теплосети от P17 до P18.	П. М	113,1	4 660	0	0	4 660	0	0	0	0	0		

	1	T	1		1		1	П	1	I	ı
2Дy = 350 мм.											
Способ											
прокладки -											
подземная в											
лотках											
Перекладка	П. М	18,6	720	0	0	720	0	0	0	0	0
участка											
теплосети от											
П16 до Р54.											
2Дy = 350 мм.											
Способ											
прокладки -											
надземная		0.2	2.60			2.60				0	
Перекладка	П. М	9,3	360	0	0	360	0	0	0	0	0
участка											
теплосети от											
Р54 до ЦТК4.											
2Дy = 350 мм.											
Спо-соб											
прокладки -											
надземная											
Перекладка	П. М	101,7	2 620	0	0	0	2 620	0	0	0	0
участка	11. 1/1	101,/	2 020				2 020				
-											
теплосети от											
Р36 до Р37.											
2Дy = 250 мм.											
Способ											
прокладки -											
надземная											
Перекладка	П. М	80,3	2 070	0	0	0	2 070	0	0	0	0
участка											
теплосети от											
Р37 до ЦТК5.											
2Дy = 250 мм.											
Спо-соб											
прокладки -											
надземная											
Перекладка	П. М	79,3	2 050	0	0	0	2 050	0	0	0	0
_	11. IVI	19,5	2 030	0	0	U	2 030	0		U	0
участка											
теплосети от											
Р55 до Р36.											
2Дy = 250 мм.											
Способ											
прокладки -											
надземная					1						
Перекладка	П. М	100	2 260	0	0	0	0	2 260	0	0	0
участка											
теплосети от											
ЦТК5 до P36.											
2Дy = 200 мм.											
Спо-соб											
прокладки -											
_											
надземная		50.4	1 140	0	0	0	0	1 140	0	0	0
Перекладка	П. М	50,4	1 140	0	0	0	0	1 140	0	U	0
участка											
теплосети от											
Р36 до ЦТК6.											
2Дy = 200 мм.											
Спо-соб	<u> </u>										

прокладки -											
надземная											
Перекладка	П. М	33,8	840	0	0	0	0	840	0	0	0
участка											
теплосети от											
КЗ до К4. 2Ду											
= 200 MM.											
Способ											
прокладки -											
подземная в											
лотках											
Перекладка	П. М	33,6	840	0	0	0	0	840	0	0	0
участка	11. 111	33,0	0.10					0.10			Ü
теплосети от											
К1 до К2. 2Ду											
= 200 MM.											
Способ											
прокладки -											
подземная в											
Лотках	П. М	88,6	1 740	0	0	0	0	1 740	0	0	0
Перекладка участка	11. IVI	00,0	1 /40	U				1 /40			
теплосети от											
ЦТК6 до P38.											
2Дy = 150 мм.											
Спо-соб											
прокладки -											
надземная		400	0.570	0		0	0	0	0.570	0	0
Перекладка	П. М	400	8 570	0	0	0	0	0	8 570	0	0
участка											
теплосети от											
TKI5 до TK5.											
2Дy = 150 мм.											
Спо-соб											
прокладки -											
подземная в											
лот-ках											
Перекладка	П. М	168	3 770	0	0	0	0	0	0	3 770	0
участка											
теплосети от											
ТК1 до РЗ.											
2Дy = 150 мм.											
Способ											
прокладки -											
подземная в											
лотках											
Перекладка	П. М	150	3 230	0	0	0	0	0	0	3 230	0
участка											
теплосети от											
ТК5 до Р4.											
2Дy = 150 мм.											
Способ											
прокладки -											
надземная											
	I.	I.	I	1	1	I	<u>I</u>	I	I	1	1

Наименование и состав	Ед. изм.	Кол-во			O	бъем фи	нансир	ования,	тыс. ру	уб.		
мероприятий	nom.		Всего	2020	2021	2022	2023	2024	2025	2026	2027	2028

	1				ı	1		ı		ı		
			2020									
			-									
			2028									
			ГГ.			_			_	_		
Перекладка	П. М	141,9	3 330	0	0	0	0	0	0	0	3	0
участка											330	
теплосети от												
ЦТК1 до ТК1.												
2Дy = 150 мм.												
Спо-соб												
прокладки -												
подземная в												
лот-ках												
Перекладка	П. М	141	3 180	0	0	0	0	0	0	0	3	0
участка											180	
теплосети от												
Р38 до ЦТК7.												
2Дy = 150 мм.												
Спо-соб												
прокладки -												
надземная												
Перекладка	П. М	46,5	1 050	0	0	0	0	0	0	0	1	0
участка		, .		_	_		_		_	_	050	-
теплосети от												
ТК10 до												
ТК11. 2Ду =												
150 мм. Спо-												
соб прокладки												
- надземная												
Перекладка	П. М	130,2	3 070	0	0	0	0	0	0	0	0	3 070
участка	11. 141	130,2	3 0 7 0								O	5 0 7 0
теплосети от												
ТК1I до ТК12.												
2Дy = 150 мм.												
Спо-соб												
прокладки -												
надземная												
Перекладка	П. М	120	2 830	0	0	0	0	0	0	0	0	2 830
-	11. M	120	2 030	U	U		U	U	U	U	U	2 030
участка теплосети от												
Р1 до ТК5.												
2Ду = 150 мм.												
2Ду — 130 мм. Способ												
прокладки -												
_												
надземная Перекладка	П. М	80	1 970	0	0	0	0	0	0	0	0	1 970
_	11. M	80	1 9/0	0	U		0	U	U	0	U	1 7/0
участка теплосети от												
К7 до ЦТК8.												
2Ду = 150 мм.												
2ду – 130 мм. Спо-соб												
прокладки -												
подземная в												
лот-ках							<u> </u>					

Реализация разработанных мероприятий направлена на повышение надежности теплоснабжения потребителей. В связи с этим оценка экономического эффекта по таким мероприятиям не является определяющей.

Стоимости мероприятий определены на основании укрупненных сметных нормативов для объектов непроизводственного назначения и инженерной инфраструктуры, утвержденных федеральным органом исполнительной власти, осуществляющим функции по выработке государственной политики и нормативно-правовому регулированию в сфере строительства (Государственные сметные нормативы. Нормативы цены строительства. НЦС 81-02-19-2017. Укрупненные нормативы цены строительства. Сборник №19. Здания и сооружения городской инфраструктуры. Утверждены Приказом Министерства строительства и жилищно-коммунального хозяйства Российской Федерации от 01.06.2017 г. №837/пр; Государственные сметные нормативы. Нормативы цены строительства. НЦС 81-02-13-2017. Утверждены Приказом Министерства строительства и жилищно-коммунального хозяйства Российской Федерации от 21.07.2017 г. №1011/пр); укрупненных оценок стоимости мероприятий по объектам аналогам.

В Приложении 2 к Схеме теплоснабжения приведена подробная информация о величине необходимых инвестиций в реконструкцию и техническое перевооружение источников тепловой энергии и тепловых сетей.

в) Предложения по величине инвестиций в строительство, реконструкцию и техническое перевооружение в связи с изменениями температурного графика и гидравлического режима работы системы теплоснабжения

Инвестиции в строительство, реконструкцию и техническое перевооружение в связи с изменениями температурного графика и гидравлического режима работы системы теплоснабжения схемой теплоснабжения не предусмотрены.

Г) Предложения по величине необходимых инвестиций для перевода открытой системы теплоснабжения (горячего водоснабжения) в закрытую систему горячего водоснабжения на каждом этапе

В условиях отсутствия предусмотренных документами территориального развития муниципального образования «Вершино-Тейский поссовет» площадок под строительство центральных тепловых пунктов закрытие систем теплоснабжения представляется целесообразным путем модернизации внутридомового инженерного оборудования.

В целях исполнения законодательства Российской Федерации в части перехода от открытой системы теплоснабжения к закрытой, а также для обеспечения потребителей в жилищном фонде муниципального образования «Вершино-Тейский поссовет» коммунальными услугами отопления и горячего водоснабжения надлежащего качества представляется целесообразным реализовать меро-приятия по модернизации внутридомовых систем отопления и горячего водоснабжения, обеспечивающих:

- расчетные параметры циркуляции теплоносителя во внутридомовом инженерном оборудовании путем установки и наладки регулирующей арматуры;
- организацию зависимой схемы подключения систем отопления и горячего водоснабжения многоквартирных и жилых домов, а также общественных зданий к системам централизованного теплоснабжения муниципального образования «Вершино-Тейский поссовет».

Применение автоматизированных (или полуавтоматизированных) тепловых пунктов и индивидуальных радиаторных регуляторов температуры, позволяет исключить превышение температуры в помещениях выше нормы и снижение температуры при незначительном отклонении температуры теплоносителя относительно температурного графика. Использование смесительных насосов также позволяет рассмотреть возможность регулирования потребления тепловой энергии на отопление в течение суток и (или) недели (понижение температуры в ночное время и выходные дни).

д) Оценка эффективности инвестиций по отдельным предложениям

Реализация разработанных мероприятий направлена на повышение надежности теплоснабжения потребителей. В связи с этим оценка экономического эффекта по таким мероприятиям не является определяющей. В таблице 10 представлен расчет эффективности инвестиций по тем мероприятиям, реализация которых позволяет получить и определить экономический эффект.

-	№ Наименован	и Ед.	Кол	Вид	Ед.	Эффек	т от меро	приятий	і́ в натур	альном і	выражен	ии (в сэн	сономлен	ном рес	ypce)
]	е и состав мероприяти	изм й .	-во	ожидаем ого эффекта	ИЗМ	Bcero 2020 - 2028	2020	2021	2022	2023	2024	2025	2026	2027	2028
						ΓΓ.									
	1 Строительст		1	Экономи	т у. т.	5220	0	0	0	0	1044	1044	1044	1044	1044
	о модульної	й ме-		Я											

	автоматизиро	no		топлива					1						
	ванной	ро- при		Снижен	Гкал	3974	0	0	0	0	7948	7948	7948	7948	7948
	уголь-ной	-		ие по-	1 Kasi	0	U			· ·	7,740	7,740	7,740	7,740	7740
	котельной (5	яти		терь и											
	котлов) на	e		не-											
	площадке			учтенны											
	рядом			x pac-											
	мастер-			ходов											
	скими			тепло-											
	карьера			вой											
				энергии											
				Повыше	-	-	-	-	-	-	-	-	-	-	-
				ние											
				уровня											
				управ- ляемост											
				и,											
				надежно											
				сти и											
				безопасн											
				ости											
				эксплуат											
				ации											
				котельно											
				й											
2	Перекладка	П. М	31,	Снижен	Гкал	805	0	0	115	115	115	115	115	115	115
	участка		4	ие по-											
	тепло-сети от			терь и											
	ЦТК1 до Р6. 2Ду = 400			не- учтенны											
	мм. Способ			х рас-											
	прокладки -			ходов											
	подземная в			тепло-											
	лотках			вой											
				энергии											
3	Перекладка	П. М	29	Снижен	Гкал	749	0	0	107	107	107	107	107	107	107
	участка			ие по-											
	тепло-сети от			терь и											
	Р6 до ЦТК2.			не-											
	2Ду = 400 мм. Способ			учтенны											
	прокладки -			х рас- ходов											
	подземная в			тепло-											
	лотках			вой											
				энергии											
4	Перекладка	П. М	116	Снижен	Гкал	1869	0	0	267	267	267	267	267	267	267
	участка		,3	ие по-											
	тепло-сети от			терь и											
	ЦТК4 до P55.			не-											
	2Ду = 250			учтенны											
	мм. Способ			x pac-											
	про-кладки -			ходов											
	надземная			тепло- вой											
				энергии											
5	Перекладка	П. М	113	Снижен	Гкал	2184	0	0	0	364	364	364	364	364	364
	участка		,1	ие по-											
	тепло-сети от		_	терь и											
	Р17 до Р18.			не-											
	2Дy = 350			учтенны											
	мм. Способ			x pac-											
	прокладки -			ходов											
	подземная в			тепло-											
	лотках			вой											
6	Перекладка	П. М	18,	энергии Снижен	Гкал	360	0	0	0	60	60	60	60	60	60
U	ттерекладка участка	11. M	6	ие по-	1 KaJI	300	U			00		00			00
	тепло-сети от			терь и											
	TOTISTO-COTH OT		l	тећви	l	1	l		1	I	1		1	1	<u> </u>

	П16 В24	1			I	ı	I	ı	ı	1	1	1	<u> </u>		
	П16 до Р54.			не-											
	2Ду = 350			учтенны											
	мм. Способ			x pac-											
	прокладки -	Ì		ходов											
	надземная			тепло-											
		Ì		вой											
7	Попачилате	H	0.2	энергии	Гио-	180	0	0	0	30	30	30	30	30	30
7	Перекладка	П. М	9,3	Снижен	Гкал	180	١	U	١	30	30	30	30	30	30
	участка тепло-сети от			ие по-											
	Р54 до ЦТК4.			терь и не-											
	2Ду = 350	Ì													
	2ду – 330 мм. Способ	Ì		учтенны х рас-											
	про-кладки -			х рас-											
	надземная			тепло-											
	-12/20 211111111			вой											
				энергии											
8	Перекладка	П. М	101	Снижен	Гкал	1170	0	0	0	0	234	234	234	234	234
	участка		,7	ие по-											
	тепло-сети от			терь и											
	Р36 до Р37.			не-											
	2Ду = 250			учтенны											
	мм. Способ	Ì		x pac-											
	прокладки -			ходов											
	надземная	Ì		тепло-											
		Ì		вой											
				энергии											
9	Перекладка	П. М	80,	Снижен	Гкал	920	0	0	0	0	184	184	184	184	184
	участка		3	ие по-											
	тепло-сети от			терь и											
	Р37 до ЦТК5.			не-											
	2Ду = 250			учтенны											
	мм. Способ			x pac-											
	про-кладки -			ходов											
	надземная	ĺ		тепло-											
				вой											
1	Попачилате	H	70	энергии	Гио-	910	0	0	0	0	192	182	182	182	182
1 0	Перекладка	П. М	79, 3	Снижен	Гкал	910	١٧	U	١٧	١٧	182	102	102	102	104
"	участка тепло-сети от		J	ие по-											
	Р55 до Р36.			терь и не-											
	2Дy = 250	Ì		учтенны											
	мм. Способ			х рас-											
	прокладки -			х рас-											
	надземная			тепло-											
				вой											
				энергии											
1	Перекладка	П. М	100	Снижен	Гкал	736	0	0	0	0	0	184	184	184	184
1	участка			ие по-											
	тепло-сети от	ĺ		терь и											
	ЦТК5 до P36.			не-											
	2Дy = 200			учтенны											
	мм. Способ	ĺ		x pac-											
	про-кладки -			ходов											
	надземная			тепло-											
				вой											
				энергии											
1	Перекладка	П. М	50,	Снижен	Гкал	372	0	0	0	0	0	93	93	93	93
2	участка		4	ие по-											
	тепло-сети от			терь и											
	Р36 до ЦТК6.	ĺ		не-											
	2Дy = 200			учтенны											
	мм. Способ			x pac-											
	про-кладки -			ходов											
	надземная			тепло-											
1		Ì		вой								ĺ			
	Перекладка	П. М	33,	энергии Снижен	Гкал	248	0	0	0	0	0	62	62	62	62

2	**************************************	1	8						1						
3	участка		8	ие по-											
	тепло-сети от			терь и											
	КЗ до К4.			не-											
	2Дy = 200			учтенны											
	мм. Способ			x pac-											
	прокладки -			ходов											
	подземная в			тепло-											
	лотках			вой											
	710 111411			энергии											
	Перекладка	П. М	33,	Снижен	Гкал	248	0	0	0	0	0	62	62	62	62
		11. M			1 KaJI	240	U	0	U	U	U	02	02	02	02
	участка		6	ие по-											
	тепло-сети от			терь и											
	К1 до К2.			не-											
	2Дy = 200			учтенны											
	мм. Способ			x pac-											
	прокладки -			ходов											
	подземная в			тепло-											
	лотках			вой											
	JOTKUX														
1	Помочно пис		00	энергии	Гиот	100	0	0	0	0	0	122	122	122	122
1	Перекладка	П. М	88,	Снижен	Гкал	488	U	0	U	0	0	122	122	122	122
5	участка		6	ие по-											
	тепло-сети от			терь и											
	ЦТК6 до Р38.			не-											
	2Дy = 150			учтенны											
	мм. Способ			x pac-											
	про-кладки -			ходов											
	_			тепло-											
	надземная														
				вой											
<u> </u>				энергии											
1	Перекладка	П. М	400	Снижен	Гкал	1653	0	0	0	0	0	0	551	551	551
6	участка			ие по-											
	тепло-сети от			терь и											
	TKI5 до TK5.			не-											
	2Ду = 150			учтенны											
	мм. Способ			x pac-											
	про-кладки -			ходов											
	подземная в			тепло-											
	лот-ках			вой											
				энергии											
1	Перекладка	П. М	168	Снижен	Гкал	464	0	0	0	0	0	0	0	232	232
7	участка			ие по-											
	тепло-сети от			терь и											
	ТК1 до РЗ.			не-											
	2Дy = 150			учтенны											
	мм. Способ			x pac-											
	прокладки -			ходов											
	подземная в			тепло-											
	лотках			вой											
				энергии											
1	Перекладка	П. М	150	Снижен	Гкал	414	0	0	0	0	0	0	0	207	207
8	участка	11. 101	150	ие по-	I KWI	'''								207	20,
0															
	тепло-сети от			терь и											
	ТК5 до Р4.			не-											
	2Дy = 150			учтенны											
	мм. Способ			x pac-											
	прокладки -			ходов											
	надземная			тепло-											
				вой											
				энергии											
1	Паракнания	II	141		Гкал	196	0	0	0	0	0	0	0	0	196
1	Перекладка	П. М		Снижен	1 KaJI	190	U	0	U	U	U	U	ľ	U	190
9	участка		,9	ие по-											
	тепло-сети от			терь и											
	ЦТК1 до			не-											
	ТК1. 2Ду =			учтенны											
	150 мм.			x pac-											
	Способ про-			ходов											
	кладки -			тепло-											
				вой											
1	подземная в			вои					I]		1	I	Ī

	лот-ках			энергии											
2 0	Перекладка участка тепло-сети от Р38 до ЦТК7. 2Ду = 150 мм. Способ про-кладки - надземная	П. М	141	Снижен ие потерь и не- учтенны х расходов тепловой энергии	Гкал	194	0	0	0	0	0	0	0	0	194
2 1	Перекладка участка тепло-сети от ТК10 до ТК11. 2Ду = 150 мм. Способ прокладки - надземная	П. М	46, 5	Снижен ие по- терь и не- учтенны х рас- ходов тепло- вой энергии	Гкал	64	0	0	0	0	0	0	0	0	64
2 2	Перекладка участка тепло-сети от ТК11 до ТК12. 2Ду = 150 мм. Способ прокладки - надземная	П. М	130 ,2	Снижен ие по- терь и не- учтенны х рас- ходов тепло- вой энергии	Гкал	0	0	0	0	0	0	0	0	0	0
2 3	Перекладка участка тепло-сети от Р1 до ТК5. 2Ду = 150 мм. Способ прокладки - надземная	П. М	120	Снижен ие по- терь и не- учтенны х рас- ходов тепло- вой энергии	Гкал	0	0	0	0	0	0	0	0	0	0
2 4	Перекладка участка тепло-сети от К7 до ЦТК8. 2Ду = 150 мм. Способ прокладки - подземная в лотках	П. М	80	Снижен ие по- терь и не- учтенны х рас- ходов тепло- вой энергии	Гкал	0	0	0	0	0	0	0	0	0	0
	итого:			Снижен ие по- терь и не- учтенн ых расходо в теп- ловой энер- гии	Т. у. т	5396 4 5220	0	0	0	943	9491	1044	1044	1044	1044
				ия топлива											

№ п/	Наименова- ние и состав	Ед. изм	Кол -во	Вид ожида-	Эффен	ст от ме	роприят	гий в ст	оимост	ном вы	ражениі	и, тыс. р	уб.		Срок окупа-
Π	мероприяти й	•		емого эффект а	Всего 2020 - 2028 гг.	2020	2021	2022	2023	2024	2025	2026	2027	2028	емо- сти, лет
1	Строительс тво модульной автоматизи рованной угольной	1 ме- роп ри- яти е	1	Эконо мия топлив а	1480	0	0	0	0	296	296	296	296	296	
	котельной (5 котлов) на площадке ря-дом мастерским и карь-ера			Сниже ние потерь и не- учтенн ых расход ов тепловой энергии	7559	0	0	0	0	1511 8	1511 8	1511 8	1511 8	1511 8	9
				Повыш ение уровня управляемос ти, надежности и безопа сности эксплу атации котель ной	-	-	-	-	-	-	-	-	-	-	
2	Перекладка участка теплосети от ЦТК1 до Р6. 2Ду = 400 мм. Спо-соб прокладки - подзем-ная в лотках	п. м	31, 4	Сниже ние потерь и неучтенных расход ов тепловой энергии	1533	0	0	219	219	219	219	219	219	219	7
3	Перекладка участка теплосети от Р6 до ЦТК2. 2Ду = 400 мм. Способ прокладки - подземная в лотках	П. М	29	Сниже ние потерь и не- учтенн ых расход ов тепловой энергии Сниже	1428 3556	0	0	204	204	204	204	204	204	204	7

			_		1	ı	T	T	1	1	ı	1	1	1	1
	участка теплосети от ЦТК4 до		,3	ние по- терь и не-											
	P55. 2Ду = 250 мм.			учтенн ых											
	Спо-соб			расход											
	прокладки -			ов теп-											
	надзем-ная			ловой энер-											
				гии											
5	Перекладка	П. М	113	Сниже	4158	0	0	0	693	693	693	693	693	693	7
	участка теплосети		,1	ние по- терь и											
	от Р17 до			не-											
	Р18. 2Ду =			учтенн											
	350 мм. Спо-соб			ых расход											
	прокладки -			ов теп-											
	подзем-ная			ловой											
	в лотках			энер- гии											
6	Перекладка	П. М	18,	Сниже	690	0	0	0	115	115	115	115	115	115	6
	участка		6	ние по-											
	теплосети от П16 до			терь и не-											
	P54. 2Ду =			не- учтенн											
	350 мм.			ых											
	Спо-соб			расход ов теп-											
	прокладки - надзем-ная			ловой											
				энер-											
7	Перекладка	П. М	9,3	гии Сниже	348	0	0	0	58	58	58	58	58	58	6
'	участка	11. WI	7,5	ние по-	346	U			36	30	36	36	36	36	O
	теплосети			терь и											
	от Р54 до ЦТК4. 2Ду			не- учтенн											
	= 350 MM.			ых											
	Способ			расход											
	прокладки - надземная			ов теп- ловой											
	надэсинал			энер-											
0			101	ГИИ	2220					115		445			
8	Перекладка участка	П. М	101 ,7	Сниже ние по-	2230	0	0	0	0	446	446	446	446	446	6
	теплосети		,,	терь и											
	от Р36 до			не-											
	P37. 2Ду = 250 мм.			учтенн ых											
	250 мм. Спо-соб			расход											
	прокладки -			ов теп-											
	надзем-ная			ловой энер-											
				ГИИ											
9	Перекладка	П. М	80,	Сниже	1750	0	0	0	0	350	350	350	350	350	6
	участка теплосети		3	ние по- терь и											
	от Р37 до			не-											
	ЦТК5. 2Ду – 250			учтенн											
	= 250 мм. Способ			ых расход											
	прокладки -			ов теп-											
	надземная			ловой											
				энер- гии											
10	Перекладка	П. М	79, 3	Сниже ние по-	1735	0	0	0	0	347	347	347	347	347	6
	участка		J	ние по-	<u> </u>	<u> </u>	<u> </u>	<u> </u>				1			<u> </u>

					1	T						•		•	1
	теплосети от P55 до P36. 2Ду = 250 мм. Спо-соб прокладки - надзем-ная			терь и не- учтенн ых расход ов теп- ловой энер- гии											
11	Перекладка участка теплосети от ЦТК5 до Р36. 2Ду = 200 мм. Спо-соб прокладки - надзем-ная	п. м	100	Сниже ние потерь и не- учтенн ых расход ов тепловой энергии	1400	0	0	0	0	0	350	350	350	350	6
12	Перекладка участка теплосети от Р36 до ЦТК6. 2Ду = 200 мм. Способ прокладки - надземная	п. м	50,	Сниже ние потерь и не- учтенн ых расход ов тепловой энер-	708	0	0	0	0	0	177	177	177	177	6
13	Перекладка участка теплосети от КЗ до К4. 2Ду = 200 мм. Способ прокладки - подземная в лотках	п. м	33, 8	Сниже ние по- терь и не- учтенн ых расход ов теп- ловой энер- гии	472	0	0	0	0	0	118	118	118	118	7
14	Перекладка участка теплосети от К1 до К2. 2Ду = 200 мм. Способ прокладки - подземная в лотках	п. м	33, 6	Сниже ние потерь и не- учтенн ых расход ов тепловой энергии	472	0	0	0	0	0	118	118	118	118	7
15	Перекладка участка теплосети от ЦТК6 до Р38. 2Ду = 150 мм. Спо-соб прокладки - надзем-ная	п. м	88,	Сниже ние потерь и не- учтенн ых расход ов тепловой энергии	932	0	0	0	0	0	233	233	233	233	7
16	Перекладка участка теплосети от ТКІ5 до	П. М	400	Сниже ние по- терь и не-	3147	0	0	0	0	0	0	1049	1049	1049	8

		1	1	T	ı	1	1			1	1	T	1	1	T	٦
	ТК5. 2Ду = 150 мм. Способ прокладки - подземная в лотках			учтенн ых расход ов теп- ловой энер- гии												
17	Перекладка участка теплосети от ТК1 до РЗ. 2Ду = 150 мм. Способ прокладки - подземная в лотках	п. м	168	Сниже ние потерь и не- учтенн ых расход ов тепловой энергии	884	0	0	0	0	0	0	0	442	442	9	
18	Перекладка участка теплосети от ТК5 до Р4. 2Ду = 150 мм. Способ прокладки - надземная	П. М	150	Сниже ние потерь и не- учтенн ых расход ов тепловой энергии	788	σ88	σ 88	T 88	■88		₩8	68 8	(13) 8	CD9-8	1008	(689 4
19	Перекладка участка теплосети от ЦТК1 до ТК1. 2Ду = 150 мм. Способ прокладки - подземная в лотках	п. м	141 ,9	Сниже ние потерь и не- учтенн ых расход ов тепловой энергии	373	0	0	0	0	0	0	0	0	373	9	
20	Перекладка участка теплосети от Р38 до ЦТК7. 2Ду = 150 мм. Способ прокладки - надземная	п. м	141	Сниже ние потерь и не- учтенн ых расход ов тепловой энергии	369	0	0	0	0	0	0	0	0	369	9	
21	Перекладка участка теплосети от ТК10 до ТК11. 2Ду = 150 мм. Способ прокладки - надземная	П. М	46, 5	Сниже ние потерь и не- учтенн ых расход ов тепловой энергии	122	0	0	0	0	0	0	0	0	122	9	
22	Перекладка участка теплосети от ТК11 до ТК12. 2Ду = 150 мм.	П. М	130	Сниже ние по- терь и не- учтенн ых	0	0	0	0	0	0	0	0	0	0	9	

				1	1	1	1	1	1	1	1	г	Г	ı	
	Способ			расход											
	прокладки -			ов теп-											
	надземная			ловой											
				энер-											
				ГИИ											
23	Перекладка	П. М	120	Сниже	0	0	0	0	0	0	0	0	0	0	9
	участка			ние по-											
	теплосети			терь и											
	от Р1 до			не-											
	ТК5. 2Ду =			учтенн											
	150 мм.			ых											
	Способ			расход											
	прокладки -			ов теп-											
	надземная			ловой											
	падэентал			энер-											
				гии											
24	Перекладка	П. М	80	Сниже	0	0	0	0	0	0	0	0	0	0	9
- '	участка	11. 141		ние по-										Ů	
	теплосети			терь и											
	от К7 до			не-											
	ЦТК8. 2Ду			учтенн											
	= 150 мм.			ых											
	Способ			расход											
	прокладки -			ов теп-											
	подземная в			ловой											
	подземная в			энер-											
	лотках			гии											
				Итого	1041	0	0	931	179	1835	1935	2039	2123	2209	
				эконо-	65	U	U	/51	7	4	0	9	5	9	
				эконо- мия	03				′	•	U		3		
				Сниже	1026	0	0	931	179	1805	1905	2010	2093	2180	
					85	U	U	931	7	8	4	3	9	3	
	Итого:			ние	03				′	o	4	3	9	3	
				потерь											
				и не-											
				учтенн											
				ых											
				расход											
				ОВ											
				теплов											
				ой											
				энерги											
				И	4.460					005	20.5	20.5	20.5	20.5	
				Эконо	1480	0	0	0	0	296	296	296	296	296	
				мия											
				топли											
1			Ī	ва	1	l	1	Ì	1	ĺ	Ì	i	I	i	i

10. РЕШЕНИЕ ОБ ОПРЕДЕЛЕНИИ ЕДИНОЙ ТЕПЛОСНАБЖАЮЩЕЙ ОРГАНИЗАЦИИ

а) Решение об определении единой теплоснабжающей организации

В соответствии с п. 4 Правил организации теплоснабжения в РФ в проекте Схемы теплоснабжения должны быть определены границы зон деятельности единой теплоснабжающей организации (организаций). Границы зоны (зон) деятельности единой теплоснабжающей организации (организаций) определяются границами системы теплоснабжения. В случае если на территории поселения, существуют несколько систем теплоснабжения, уполномоченные органы вправе:

- определить единую теплоснабжающую организацию (организации) в каждой из систем теплоснабжения, расположенных в границах поселения;
- определить на несколько систем теплоснабжения единую теплоснабжающую организацию.

В соответствии с Критериями и порядком определения единой теплоснабжающей организации в качестве единой теплоснабжающей организации определено МУП «Абагаз» в эксплуатируемых им зонах действия котельных (таблица 11).

б) Реестр зон деятельности единой теплоснабжающей организации

Единая теплоснабжающая организация	Наименование системы теплоснабжения
МУП «Абагаз»	р.п. Вершина Тёи

в) Основания, в том числе критерии, в соответствии с которыми теплоснабжающая организация определена единой теплоснабжающей организацией

Решение об определении единой теплоснабжающей организации принимается на основании критериев определения единой теплоснабжающей организации, установленных в Правилах организации теплоснабжения в РФ (Критерии и порядок определения единой теплоснабжающей организации), утв. Постановлением Правительства РФ от 08.08.2012 № 808 «Об организации теплоснабжения в РФ и о внесении изменений в некоторые акты Правительства РФ».

В соответствии с п. 7 Правил организации теплоснабжения в РФ критериями определения единой теплоснабжающей организации являются:

- владение на праве собственности или ином законном основании источниками тепловой энергии с наибольшей рабочей тепловой мощностью и (или) тепловыми сетями с наибольшей емкостью в границах зоны деятельности единой теплоснабжающей организации;
- размер собственного капитала;
- способность в лучшей мере обеспечить надежность теплоснабжения в соответствующей системе теплоснабжения.

г) Информация о поданных теплоснабжающими организациями заявках на присвоение статуса единой теплоснабжающей организации

Информация о поданных теплоснабжающими организациями заявках на присвоение статуса единой теплоснабжающей организации отсутствует.

д) Реестр систем теплоснабжения, содержащий перечень теплоснабжающих организаций, действующих в каждой системе теплоснабжения, расположенных в границах поселения

таблица 12

Наименование системы теплоснабжения	Единая теплоснабжающая организа-ция
р.п. Вершина Тёи	МУП «Абагаз»

11. РЕШЕНИЯ О РАСПРЕДЕЛЕНИИ ТЕПЛОВОЙ НАГРУЗКИ МЕЖДУ ИСТОЧНИКАМИ ТЕПЛОВОЙ ЭНЕРГИИ

Решения о распределении тепловой нагрузки между источниками тепловой энергии схемой теплоснабжения не предусмотрены, так как на территории муниципального образования имеется 1 теплоисточник.

Подключение новых потребителей к теплоисточнику представляется целесообразным при условии непревышения, располагаемой тепловой мощности.

12. РЕШЕНИЯ ПО БЕСХОЗЯЙНЫМ ТЕПЛОВЫМ СЕТЯМ

На территории муниципального образования «Вершино-Тейский поссовет» бесхозяйные объекты теплоснабжения не выявлены.

В соответствии с Порядком принятия на учет бесхозяйных недвижимых вещей, утвержденным приказом Минэкономразвития России от 10.12.2015 г. №931 «Об установлении Порядка принятия на учет бесхозяйных недвижимых вещей», объекты недвижимого имущества, которые не имеют собственников, или собственники которых неизвестны, или от права собственности на которые собственники отказались, принимаются на учет органами государственного кадастрового учета и государственной регистрации прав. Принятие на учет объекта недвижимого имущества осуществляется на основании заявления органа местного самоуправления, на территории которого находится объект недвижимого имущества.

Необходимость выполнения данного мероприятия очевидна как с экономической точки зрения, так и с точки зрения надежности теплоснабжения и безопасности бесхозяйных объектов для населения и окружающей среды.

В связи с этим, в случае выявления таких сетей, учитывая требования ст. 14 Федерального закона от 23.11.2009 г. №261-ФЗ «Об энергосбережении и о повышении энергетической эффективности и о

внесении изменений в отдельные законодательные акты Российской Федерации», в муниципальном образовании «Вершино-Тейский поссовет» необходимо:

- провести работу по выявлению бесхозных объектов недвижимого имущества, используемых для передачи тепловой энергии;
- поставить выявленные объекты на учет в установленном порядке в качестве бесхозных объектов недвижимого имущества;
- признать право муниципальной собственности на данные бесхозные объекты недвижимого имущества;
- организовать управление бесхозными объектами недвижимого имущества с момента выявления таких объектов, в том числе определить источники компенсации возникающих при их эксплуатации нормативных потерь энергетических ресурсов, в частности за счет включения расходов на компенсацию данных потерь в тариф организации, управляющей такими объектами.
- 13. СИНХРОНИЗАЦИЯ СХЕМЫ ТЕПЛОСНАБЖЕНИЯ СО СХЕМОЙ ГАЗОСНАБЖЕНИЯ И ГАЗИФИКАЦИИ РЕСПУБЛИКИ ХАКАСИЯ, СХЕМОЙ И ПРОГРАММОЙ РАЗВИТИЯ ЭЛЕКТРОЭНЕРГЕТИКИ, А ТАКЖЕ СО СХЕМОЙ ВОДОСНАБЖЕНИЯ И ВОДООТВЕДЕНИЯ МУНИЦИПАЛЬНОГО ОБРАЗОВАНИЯ «ВЕРШИНО-ТЕЙСКИЙ ПОССОВЕТ»
- а) Описание решений (на основе утвержденной региональной программы газификации жилищнокоммунального хозяйства, промышленных и иных организаций) о развитии соответствующей системы газоснабжения в части обеспечения топливом источников тепловой энергии

По состоянию на 2020 год на территории Республики Хакасия отсутствует утвержденная программа газификации жилищно-коммунального хозяйства, промышленных и иных организаций.

- б) Описание проблем организации газоснабжения источников тепловой энергии
- В муниципальном образовании «Вершино-Тейский поссовет» на теплоисточнике в качестве топлива используется уголь. Газификация муниципального образования «Вершино-Тейский поссовет» позволит перевести теплоисточники на более экономичное и экологичное топливо.
- в) Предложения по корректировке утвержденной (разработке) региональной программы газификации жилищно-коммунального хозяйства, промышленных и иных организаций для обеспечения согласованности такой программы с указанными в схеме теплоснабжения решениями о развитии источников тепловой энергии и систем теплоснабжения

По состоянию на 2020 год на территории Республики Хакасия отсутствует утвержденная программа газификации жилищно-коммунального хозяйства, промышленных и иных организаций.

г) Описание решений (вырабатываемых с учетом положений утвержденной схемы и программы развития Единой энергетической системы России) о строительстве, реконструкции, техническом перевооружении, выводе из эксплуатации источников тепловой энергии и генерирующих объектов, включая входящее в их состав оборудование, функционирующих в режиме комбинированной выработки электрической и тепловой энергии, в части перспективных балансов тепловой мощности в схемах теплоснабжения.

Приказом Минэнерго России от 01.03.2016 №147 утверждена схема и программа развития Единой энергетической системы России на 2016 — 2022 годы. Решения о реконструкции, техническом перевооружении источников тепловой энергии на территории муниципального образования «Вершино-Тейский поссовет», не затрагивают положения указанной схемы и программы развития Единой энергетической системы России.

д) Предложения по строительству генерирующих объектов, функционирующих в режиме комбинированной выработки электрической и тепловой энергии, указанных в схеме теплоснабжения, для их учета при разработке схемы и программы перспективного развития электроэнергетики, схемы и программы развития Единой энергетической системы России, содержащие в том числе описание участия указанных объектов в перспективных балансах тепловой мощности и энергии

Строительство генерирующих объектов, функционирующих в режиме комбинированной выработки электрической и тепловой энергии, на территории муниципального образования «Вершино-Тейский поссовет» схемой теплоснабжения не предусмотрено.

е) Описание решений (вырабатываемых с учетом положений утвержденной схемы водоснабжения и водоотведения муниципального образования «Вершино-Тейский поссовет») о развитии соответствующей системы водоснабжения в части, относящейся к системам теплоснабжения.

Реконструкция, техническое перевооружение существующих или строительство новых систем водоснабжения в части, относящейся к системам теплоснабжения, на территории муниципального образования «Вершино-Тейский поссовет» не требуются.

ж) Предложения по корректировке утвержденной (разработке) схемы водоснабжения и водоотведения муниципального образования «Вершино-Тейский поссовет» для обеспечения согласованности такой схемы и указанных в схеме теплоснабжения решений о развитии источников тепловой энергии и систем теплоснабжения

Корректировка утвержденной (разработка) схемы водоснабжения и водоотведения для обеспечения согласованности такой схемы и указанных в схеме теплоснабжения решений о развитии источников тепловой энергии и систем теплоснабжения не требуется.

14. ИНДИКАТОРЫ РАЗВИТИЯ СИСТЕМ ТЕПЛОСНАБЖЕНИЯ

Результаты оценки существующих и перспективных значений индикаторов развития систем теплоснабжения представлены в таблице 13.

Индикатор	2019 г.	2020 г.	2021 г.	2022 г.	2023 г.	2024 г.	2025 г.	2026 г.	2027 г.	2028 г
Количество прекраще-ний подачи тепловой энергии, теплоноси-теля в результате	0	0	0	0	0	0	0	0	0	0
тех-нологических наруше-ний на тепловых сетях										
Количество прекраще-ний подачи тепловой энергии, теплоносителя в результате тех-нологических наруше-ний на источниках	0	0	0	0	0	0	0	0	0	0
тепловой энергии Удельный расход условного топлива на единицу тепловой энергии, отпускаемой с коллекторов источ- ников тепловой энер-гии	185,9	185,9	185,9	185,9	185,9	185,9	185,9	185,9	185,9	185,9
Отношение величины гехнологических по- герь тепловой энергии, теплоносителя к материальной характеристике тепловой сети	8,8	8,8	8,8	8,7	8,5	5,1	4,9	4,7	4,6	4,4
Коэффициент исполь-зования установлен-ной тепловой мощно-сти	0,45	0,45	0,45	0,86	0,85	0,85	0,84	0,84	0,45	0,45
Удельная материальная характеристика тепловых сетей, приведенная к расчетной тепловой нагрузке	143,3	143,3	143,3	143,3	143,3	178,1	178,1	178,1	178,1	178,1
Доля тепловой энер- гии, выработанной в комбинированном ре-жиме	0	0	0	0	0	0	0	0	0	0
Удельный расход условного топлива на отпуск	0	0	0	0	0	0	0	0	0	0

· ·			I	I						
электрической										
энергии										
Коэффициент	-	-	-	-	-	-	-	-	-	-
исполь-зования										
теплоты топ-лива										
(только для ис-										
точников тепловой										
энергии, функциони-										
рующих в режиме										
комбинированной										
вы-работки										
электриче-ской и										
тепловой энер-гии)										
Доля отпуска тепло-	1	1	1	1	1	1	1	1	1	1
вой энергии, осу-										
ществляемого потре-										
бителям по										
приборам учета, в										
общем объеме										
отпущенной										
тепловой энергии										
Средневзвешенный	31	31	30	28	26	24	22	20	18	16
(по материальной								_ •		- 4
ха-рактеристике)										
срок эксплуатации										
тепло-вых сетей										
Отношение матери-	-	0,0	0,0415	0,0385	0,0509	0,0443	0,0468	0,0372	0,0385	0,0386
альной характери-		0,0	0,0113	0,0505	0,020)	0,0113	0,0100	0,0572	0,0505	0,0300
стики тепловых										
сетей,										
реконструированных										
за год, к общей										
мате-риальной										
характери-стике										
тепловых сетей										
Отношение установ-	0,0	0,0	0,0	0,0	0,0	1,0	0,0	0,0	0,0	0,0
ленной тепловой	3,0	·,·	3,0	","	3,0	1,0	3,0	3,0	3,0	J,0
мощ-ности										
оборудования										
источников										
тепловой энергии,										
реконструи-										
рованного за год, к										
об-щей										
установленной										
тепловой мощности										
источников										
тепловой энергии										
тепловой эпергии]		j	j]				

15. ЦЕНОВЫЕ (ТАРИФНЫЕ) ПОСЛЕДСТВИЯРасчет прогнозного платежа населения муниципального образования «Вершино-Тейский поссовет» за тепловую энергию произведен на основании прогноза спроса населения на коммунальные ресурсы и прогнозируемых тарифов с учетом инвестиционной составляющей в тарифе на тепловую энергию МУП «Абагаз» (таблица 14).

Таблица 14

Тарифно-балансовая расчетная модель теплоснабжения МУП «Абагаз»

№ п/п	Наименов	Механизм	2020	2021	2022	2023	2024	2025	2026	2027	2028	Всего
	а-ние	расчета										
	статьи											
	расходов											
1.	Объем	Глава 2	22756	22756	22756	22756	22756	22756	22756	22756	22756	204804

	реали-	Обосновы-										
	зации,	вающих										
	Гкал	материа-лов			00010	00001	0=01=	22212	0.624.5	10001	10551	50560 0
2.	НВВ с	Тариф * объем	72137	76669	80248	83994	87915	92019	96315	10081	10551	795628, 0
	уче-том измене-	ре-ализации текущего года								2	9	0
	ния	Тепущего года										
	объемов											
	реализаци											
	и, тыс. руб.											
3.	Снижение	Глава 10	0	0	931	1 797	18	19	20	21	22	104165,
	эксплуата	Обосно-					354	350	399	235	099	0
	ци-онных затрат за	вывающих матери-алов										
	счет эф-	матери алов										
	фективнос											
	ти											
	реализаци и											
	проектов,											
	тыс. руб.				150							
4.	Рост эксплуа-	Глава 10 Обосно-	0	0	170	343	546	750	1 007	1 217	1 444	5477,0
	тационны	вывающих										
	х затрат за	матери-алов										
	счет											
	амортизац и-онных											
	отчис-											
	лений,											
5.	тыс. руб. Изменени	(Стр.2 – стр.3 +	0	0	-1	-2	-20	-20	-20	-20	-20	-12,4
٥.	е затрат,	стр.4)/стр.2*10			1	_	20	20	20	20	20	12,1
	%	0-100										
6.	Инвестици -онные за-	Глава 10 Обосно-	0	5667	5740	6740	6820	8570	7000	7560	7870	55 967,0
	траты,	вывающих										707,0
	тыс. руб.	матери-алов										
	В ТОМ											
6.1.	числе: - за счет	Глава 10	0	0	170	343	546	750	1007	1217	1444	5477,0
	амортизац	Обосно-										, .
	ии	вывающих										
6.2.	- за счет	матери-алов Глава 10	0	5667	5570	6397	6274	7820	5993	6343	6426	50490,0
0.2.	ин-	Обосно-		3007			02/4	, 320		0575	0 120	50770,0
	вестицион	вывающих										
	-ной составля-	матери-алов										
	ющей в											
	та-рифе											
7.	НВВ с	Стр. 2-	72137	82	85	88	76	79	83	87	91	747430,
	уче-том реализа-	стр.3+стр.4+су мма по стр.		980	798	851	418	730	234	105	175	0
	ции	6.2./8 лет										
	меропри-											
	ятий и инве-											
	стиционно											
	й											
	составляю											
	-щей в та- рифе, тыс.											
	рифе, тыс.											
Тариф,	Стр.	3170,02	3646,	3770,	3904,	3358,	3503,	3657,	3827,	4006,	3649,	Тариф,
руб./Гк	7/стр.1		52	36	52	16	70	68	79	65	49	руб./Гк
ал		1		l								ал